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Cairns (1979) has recently shown how the concept of negative wave energy used in 
plasma physics can be exploited to obtain insights into the linear and nonlinear 
instability of certain parallel flows. We here analyse the linear stability and nonlinear 
three-wave resonance in a three-layer flow with step-wise velocity and density 
profiles. The results are in complete agreement with Cairns’ qualitative predictions. 
In particular, the existence is confirmed of an ‘explosive ’ instability in which all three 
waves of a resonant triad grow simultaneously while total wave energy is conserved. 
Such nonlinear instabilities, previously undetected in fluid flows, may well be 
important in the ocean and atmosphere. 

1. Introduction 
In a recent paper, Cairns (1979) has drawn attention to the important role of wave 

energy in the linear and nonlinear instability of parallel flows. In  plasma physics, it  is 
well known that waves may have either positive or negative energy, in the sense that 
exciting them increases or decreases the total energy of the system as viewed from 
the chosen frame of reference; and that the nature of the interactions among such 
waves, both linear and nonlinear, is critically dependent on the signs of the respective 
wave energies. Since a plasma can support many different types of waves, it is par- 
ticularly important to be able to identify regions of linear or nonlinear instability before 
carrying out a full and detailed analysis of the problem. An awareness of the role of 
wave energy provides this insight. 

Cairns has drawn attention to the fact that similar ideas are of value in fluid 
mechanics. He has demonstrated that the concept of negative energy applies to a class 
of stratified parallel flows and that it affords a satisfying explanation of certain 
known results in linear stability theory (a fact previously recognized by Landahl 
(1962) and Benjamin (1960, 1963) in the context of flow over compliant walls). In 
addition, Cairns has identified the existence in such flows of nonlinear three-wave 
resonant instabilities in which total wave energy is conserved but all three wave 
amplitudes can grow simultaneously, a phenomenon known in plasma physics as 
‘explosive instability ’ since the solutions theoretically attain infinite amplitudes after 
a finite time. Of course, the weakly nonlinear theory must break down before this 
singularity is reached. 
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FIGURE 1 .  Tho flow configuration. 

The theory as outlined by Cairns relates to waves in inviscid parallel flows for 
which the density profile is piecewise constant and the velocity profile is piecewise 
constant or piecewise linear. The influence of small viscosity may also be deduced, but 
extension of the theory to viscous shear flows with curved velocity profiles WOUM 
entail considerable modification to account for any ‘critical layers’ in the flow. On the 
other hand, the theory may readily be modified to  deal with continuously-stratified 
parallel shear flows, in the absence of such critical layers (cf. Acheson 1976). 

The general features are demonstrated by Cairns by examination of simple Kelvin- 
Helmholtz flows. Particularly instructive is the three-layer model, in which a layer of 
intermediate density pz is sandwiched between two semi-infinite fluids, with densities 
p1 and p3, where pI < pz < p3, and each fluid region may have a different uniform 
velocity, UL (i = 1 , 2 , 3 ) .  The two interfaces may be subject to both gravity g and 
surface tension y7 ( j  = 1,Z). This configuration is shown in figure 1 .  

The linear stability of a similar configuration was analysed by Taylor (1931), who 
noted that instability may occur a t  flow velocities below those for Kelvin-Helmholtz 
instability of each interface taken individually. This arises when a wave mode centred 
on the upper interface and another with the same wavenumber centred on the lower 
interface have similar frequencies. This instability may be understood, and predicted, 
without detailed analysis, in terms of the coalescence of positive- and negative-energy 
wave modes (see Cairns 1979, $ 5 ) .  The nonlinear stability of this system is also of 
interest, as i t  can support resonant triads comprising waves with respective energies of 
differing signs. When this occurs, the so-called ‘explosive instability’ takes place, in 
which all three waves may grow simultaneously, though total wave energy is conserved 
(see Cairns 5 6 who also cites relevant previous work). Although there is a wealth of 
theoretical, experimental and oceanographic data concerning energy-conserving 
resonant interactions among three (and four) waves, all of positive energy, there 
are as yet no experiments or observations which convincingly demonstrate the 
phenomenon of ‘explosive instability ’ in fluids. This is a t  least partly due to a lack of 
awareness that such instability is predicted by theory. 

The energy considerations elucidated by Cairns predict that  explosive instability 
occurs in the three-layer configuration, but the actual weakly-nonlinear calculation 
which is necessary to determine the precise interaction coefficients has not previously 
been carried out. Some calculations have been done for interactions among internal 
waves and surface waves (i.e. the three-layer configuration with the density of the 
upper fluid taken as zero, and no primary flow velocities, U, = 0, i = I ,  2 ,3) ,  when all 
waves necessarily have positive energy (Ball 1964; Joyce 1974); but, even for these, 
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the resulting algebraic complexities were sufficient to encourage further approxi- 
mations. We here present the results of our calculation, without such simplifying 
approximations, of the weakly nonlinear interaction coefficients for cases of 
resonant interaction in the three-layer Kelvin-Helmholtz configuration. These 
calculations confirm the correctness of the predictions based on consideration of the 
signs of the energies of the respective waves. They further enable estimation of the 
characteristic growth times of the unstable disturbances. 

The present work reveals an important, but overlooked, mechanism of internal 
wave generation in the ocean and the atmosphere. The presence of a modest current or 
wind, along with density discontinuities, may be sufficient to cause the energy of an 
interfacial internal wave (as defined in the chosen reference frame) to  become negative. 
The nonlinear resonant interaction of this negative-energy wave with appropriate 
positive-energy waves may cause all three waves to  grow, a t  a rate faster than 
exponential, until limited by higher-order or dissipative effects. This is a potentially 
more powerful mechanism for generating internal waves than the interactions among 
three positive-energy waves which have been investigated until now. 

2. The linear analysis 
The formulation of t,he problem is basically as in 3 5 of Cairns (1979), with the excep- 

tion that each of the three fluid layers is regarded as having a primary uniform 
velocity U?(i = 1 , 2 , 3 ) ,  whereas Cairns considers only the uppermost fluid to be in 
motion. The velocity potential of a general wavelike disturbance satisfies Laplace's 
equation in each layer and decays to  zero as z --f cx): the potential therefore has the 
form : 

(2.1) 

and the vertical displacements of the interfaces a t  z = 0 and z = - d are 

(2.2) 

Here, the wavenumber k is taken to be real and positive, and physical quantities 
correspond to the real parts of the appropriate complex expressions. The kinematic 
and pressure boundary conditions a t  the two interfaces lead directly to the linear 
dispersion relation for the frequency w ,  

rl = A l e i k x - i w t ,  9z = Azeiks-iwt 

(2.3) 

where 
o l ( w , k )  ( ~ 2 - ~ 1 ) 9 + ~ 1 k ~ - k - ' ( p l ( k U ~ - w ) ~ + p 2 ( l c ~ i , - w ) ~ c o t h  (kd ) ) ,  

B ~ ( w ,  k) (p3 - p z )  y + yZ k2 - k-l{p3(kU3 - w ) ~  +pz(kC& - w ) ~  Goth (kd)} 
and 

A(w, k) = pz k-l(kU, - w ) ~  cosech ( k d ) .  

The coefficients of surface tension a t  the upper and lower interfaces are denot'ed by 
yl, yz respectively. Note that, as in Cairns' $ 5 ,  the dispersion relation for waves on 
the upper interface if the lower one is replaced by a rigid boundary a t  z = - d is just 
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Dl(w,  k )  = 0. Similarly, D,(w, k )  = 0 is the dispersion relation for waves on the lower 
interface when the upper interface z = 0 is rigid. When the quantity A is small (i.e. 
kd $ 1) the coupled system behaves rather like the uncoupled ones, having D,(w, k )  
and D,(w, k )  approximately equal to zero for ‘upper’ and ‘lower’ modes respectively. 
However, throughout this paper, the exact dispersion relation (2.3) is used, and no 
assumption is made regarding the size of kd. 

Clearly, the dispersion relation may be written in various forms; we emphasize 
that the present form is that resulting from the procedure outlined by Cairns $ 2, in 
which D(w, k )  represents the difference in pressure (after accounting for surface tension) 
either just above or just below the interface centred a t  z = 0. The physically admissible 
disturbances are just  those for which this pressure-difference is zero. It is only when 
the dispersion function D(w, k )  describes this pressure difference (at  any chosen 
reference depth, not necessarily z = 0) that it arises in a physically natural fashion 
in the expression for the wave energy E ( k ,  w )  as (see Cairns, $ 2 )  

where 1 A J is the amplitude of the vertical displacement at the chosen reference depth 
and waD/itw is evaluated a t  the appropriate root of the dispersion relation D(w, k )  = 0. 
Since the reference depth is here chosen a t  z = 0, A equals A ,  from (2.2) and D(w, k )  
is as given in (2.3).  (Had z = - d  been chosen, A would equal A,  and D(w, k )  would be 
as in (2.3) but with D, and D, interchanged.) 

Since equation (2.3) may be re-expressed as a quartic for the unknown frequency w ,  
the roots are easily computed using standard procedures. These roots are shown in 
figures 2 (a)-(e) for the following illustrative cases: 

p1 = 1.015, p2 = 1.020, p3 = 1.026 ( g ~ m - ~ ) ;  
y1 = 74, y, = O(gs-,); g = 981 (ems-,); 

various Ul; U, = U3 = O(cms-l), d = 8(cm). 

Figure 2(a )  shows the four wave modes with no basic flow. For the most part, those 
labelled 1 and 2 are centred on the lower interface and those labelled 3 and 4 are 
centred on the upper interface. The exceptions are waves with kd < O(l) ,  which occur 
near the origin of figure 2; no such simple identification is then possible since the 
variation in amplitude over the depth d is small in such cases. Provided kd is not too 
small, modes 1 and 2 have D, w 0 and modes 3 and 4 have D, w 0. 

Figure 2 (b) shows the case Ul = 3 cm SKI. Modes 1 and 2 are virtually unchanged but 
3 and 4 are displaced upwards. Had modes 2 and 3 been represented by the approxi- 
mations D, = 0 and D, = 0 respectively, the curves so obtained would intersect near 
k = 0.35. But near such an intersection the coupling between the interfaces becomes 
significant; and, since the energy of both these modes is positive, their interaction is of 
the passive sort giving no instability but causing an interchange of identity on the 
continuous curves (see Cairns, figure 3b). This feature is also shown in figure 2(c),  
where now the energy of mode 3 is on the point of changing sign in the vicinity of 
k = 0.25 ern-,. I n  figure 2 ( d ) ,  mode 3 has negative energy wherever it has positive 
frequency, i.e. for 0.1 < k < 0-8 approximately. In 2 (e), mode 3 and mode 1 ‘intersect’, 
and since they have respective negative and positive energies near the intersections, 
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the coupling between them is of the unstable sort (Cairns, figure 3 c ) ,  giving complex 
frequencies in the neighbourhoods of k = 0.2 and k = 0.5cm-l. I n  figure Z ( f ) ,  the 
negative-energy mode 3 and the positive energy mode 4 have ‘intersected’, giving 
the classical Kelvin-Helmholtz instability of the upper interface, in addition to the 
instabilities associated with the coupling of modes 1 and 3. These three unstable 
regions are shown by double arrows on the diagram, the Kelvin-Helmholtz instability 
being labelled ‘K-H ’. 

It should be emphasized t>hat the qualitative features of the exact dispersion curves 
shown in figure 2 can be (and were) successfully predicted from consideration of the 
uncoupled dispersion relations D, = 0 and D, = 0 and the energies of the respective 
uncoupled wave modes. This would be a great advantage in dealing with multi-layer 
configurations for which the precise coupled dispersion relation is less readily obtained. 

3. Resonant triads 
‘Explosive ’ instabilit,y occurs when three waves are in resonance and the wave of 

greatest frequency has energy of different sign to the energies of the ot,her two waves 
(see Cairns 3 5 ) .  The resonance conditions for three waves with wavenumbers k,, k,, k, 
(all greater than zero) and corresponding real frequencies wl, 02, W3 are 

k ,  = k ,+k , ,  ~1 = wz+wg, (3.11 

and the interaction of such waves is of the explosive sort when the wave (k , ,  wl) has 
energy of different sign to  that of the waves (k, ,  w,) and (k,, w3).  (We here restrict 
attention to two-dimensional waves; but extension to  waves propagating in different 
directions is quite straightforward.) Investigation of the dispersion diagrams such as 
those shown in figures 2(a)-( f )  reveals that  there exist resonant triads of this kind. 
I n  the first instance, this is most easily seen (e.g. Ball 1964) by redrawing the dispersion 
curves on a transparent sheet then moving the origin of the redrawn curves along one 
of the original curves (keeping the orientation of the axes constant). A typical example 
is shown in figure 3. If the origin of the redrawn curves is made to follow the original 
negative-energy branch 3, i t  is found that the negative-energy branch on the trans- 
parency intersects the positive-energy branch 1 whenever the origin at (k,, w,) lies 
between the points (0.18, 0.3) and (0.64, 0.8) of branch 3. A point of intersection 
determines the positive-energy wave (k,, wl), on branch 1 and the negative-energy 
wave (k3 ,w3) ,  on the redrawn branch 3, which form a resonant triad with ( k , , ~ , ) .  
Once the approximate range of such triads is determined in this way, further com- 
putations can be undertaken, using an iterative scheme, to determine the precise 
values of wavenumber and frequency of particular triads; such results are presented 
in $ 5 .  

We note, in particular, that  ‘explosively ’ resonant triads in cases corresponding 
to  figure 3 comprise two waves of negative energy and one of positive energy; and 
that, since the configuration of figure 3 is not linearly unstable, the explosive instability 
of these resonant triads provides a nonlinear instability mechanism a t  flow velocities 
below that for any linear one. 

I n  contrast, figure 4 shows the existence of linear instability in two narrow bands 
of wavenumber centred approximately where uncoupled branches 1 and 3 (with 
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FIGURE 3. Location o f ‘  explosive’ resonant triads. The particular case shown is for p, = 1.010, 
pz = 1.020, p3 = 1.026 gcm-3; 7, = 100, ya = O ~ S - ~ ;  g = 981 cm+, d = Scm, U, = 10, 
U, = U3 = Ocms-l. 

D, = 0 and D, = 0) would have intersccted. By the method outlined above, i t  is also 
found that there are resonant triads comprising two positive-energy waves (on branch 
1) and one negative-energy wave: the negative-energy wave (k,, w l )  in such cases lies 
on parts of branch 3 which lie above branch I .  I n  addition, there are triads of two 
negative-energy waves and one positive-energy wave for which the positive-energy 
wave (k,, w l )  lies on a portion of branch 1 situated above branch 3. Both these types 
of triad are of the ‘explosive ’ sort. 

It is perhaps worth mentioning that the linear instability of this configuration may 
be interpreted as a sort of ‘degenerate explosive instability ’. For, when (uncoupled) 
positive and negative modes intersect, the intersection point is a point of resonance 
between the positive and negative modes, and a ‘ wave ’ of zero frequency and wave- 
number; the resonance is of the explosive sort since, if the ‘wave of zero frequency’ 
has positive energy, the negative-energy mode may be considered to be of infini- 
tesimally greater wavenumber than the positive-energy mode (or vice versa if the wave 
of zero frequency has negative energy). I n  contrast, although the intersection of two 
linear modes of like energy form a resonant triad with a zero-frequency mode, their 
interaction is of the non-explosive sort, and so is associated not with instability, 
but with slight changes in frequency from those given by the uncoupled dis- 
persion relations, in agreement with the qualitative curves shown in Cairns’ 
figure 3. 

In addition to the ‘explosive’ triads already mentioned, there are several categories 
of resonant triads which are not of the ‘explosive ’ kind. For instance, i t  may be inferred 
from figure 3 that  there are three resonant positive-energy waves, one on each of 
branches 1, 2, and 4, with that on branch 1 having the largest wavenumber. Also, 
from figure 3, there arc triads of two positive-energy waves and one negative-energy 
wave, with one wave on each branch 1, 3 and 4: this is ‘non-explosive’ since the 
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FIGURE 4. Dispersion curve for p1 = 1.010, p, = 1*02G, ps = 1.023 gem-,; y1 = 74, yz = 0 g 
cm-2; g = 981 ems-,, d = 8cm; U ,  = 10.0, U ,  = U, = 0 cms-1. Resonant triads of modes 1 and 3 
are of ‘explosive ’ sort. 

negative-energy wave does not have the greatest frequency. There are also resonant 
triads of three negative-energy waves on branch 3 and three positive-energy waves 
on branch 4, the latter corresponding, in the case CJl = 0 ,  to the well-known resonance 
of gravity-capillary waves on a single interface. 

It is clear that, even in this simple flow configuration, there is a rich structure of 
resonant interactions. Energy concepts enable one to tell, without detailed calculation, 
which of these interactions are of the explosively unstable sort, and which are not. 
But a precise description of the interaction requires detailed nonlinear analysis. 

4. The nonlinear analysis 
The means of calculating the evolution equations for the amplitudes of resonantly- 

interacting weakly-nonlinear waves is well established in principle, but cumbersome 
and laborious in practice. For resonant interactions of surface gravity-capillary waves 
in fluid of infinite depth, this analysis has been carried out by McGoldrick (1965), 
Simmons (1969) and Case & Chiu (1977). Simmons’ variational formulation of the 
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problem somewhat reduces the algebraic manipulations, as compared with a direct 
attack on the nonlinear boundary conditions, and this approach also emphasizes the 
inherent symmetry of the problem by drawing attention to the interrelationship of 
the three nonlinear coupling coefficients. Despite McGoldrick’s apparent difficulty in 
establishing analytically that energy is conserved, it is easy, for two-dimensional 
waves at  any rate, to confirm that this is so, working from his equations (3.13) and 
noting a misprint (4a, for 4a1) in the final equation. 

Some work on a three-layer medium but without a primary flow, was done by 
Simmons in a doctoral dissertation, reported briefly in Simmons (1969). Also, Ball 
(1964) has considered the resonant interaction of surface and internal waves in a two- 
layer system using a shallow-water approximation and Thorpe (1966), Joyce (1974) 
and Watson, West & Cohen (1976) have examined similar interactions for a con- 
tinuously stratified fluid. Also of interest is the work of Gargett & Hughes (1972) on 
the interaction of long internal waves and short surface gravity waves; of Djordjevic 
& Redekopp (1977) on long and short surface wave interaction; and of Craik (1968) 
on resonant surface gravity waves on a uniform shear flow. 

We here present a complete analysis of resonant wave triads for the general inviscid 
three-layer configuration of figure 1, the only assumption being the usual one of wezk 
nonlinearity. The algebraic complexities are formidable, requiring care and persistence, 
and the results were checked in several ways which are described later. 

Each of three waves, with periodicities of the form exp [i(ki - oi t ) ] ,  (j = 1 , 2 , 3 )  and 
wavenumbers and frequencies ki, wi satisfying the resonance conditions (3. 1),  may 
be represented, to linear approximation, as in 9 2, the various functions and constants 
#,, C,, A, being supplied with superscripts, e.g. A:), where j = 1 , 2 , 3  distinguishes 
the respective waves. The resonance conditions (3.1) imply a suitable choice of 
k,, k,, k, as indicated in the previous section. In  addition, a second-order correction 
must be added to the linear description of each wave, and this is done by the inclusion 
of further terms, similar to  those of (2.1) and (2.2), but with different constants 
identified by the symbol ‘ A ’, namely, 6%) (m = 1 , 2 , 3 , 4 )  and &) (n = 1,2) .  We recall 
that the stream function must satisfy Laplace’s equation in each fluid layer, and that 
nonlinearities enter the problem only through the interfacial boundary conditions. It 
is unnecessary to calculate various second-order but non-resonant terms, such as the 
second harmonics in exp[i(2kjz-20jt)], since these play no part in the nonlinear 
evolution equations a t  the level of approximation sought. However we note that the 
omission of such terms excludes the special case where a wave and its own second 
harmonic form a resonant triad of the form 12, = 2k,, w1 = 204. Such cases have been 
investigated by McGoldrick (1  970) and Nayfeh (1973) for waves on a single interface. 

The linear constants 15’2) (m = 1 , 2 , 3 , 4 )  and A:) (n = 1,2)  are related by the kine- 
matic and pressure boundary conditions at the two interfaces. I n  practice, i t  proved 
convenient to represent the (72) and A?) in terms of AIj), the wave amplitudes a t  the 
upper interface. Similarly, the second-order coefficients 8:) and i@ are related to each 
other and to  the linear amplitude functions A v ) ( t )  by the same boundary conditions, 
taken to second order in wave amplitudes. I n  doing so, allowance must be made for 
the slow temporal variations in wave amplitude by retaining terms in dAii)/dt. If 
required, slow spatial variations may also be included without undue difficulty (cf. 
Simmons, 1969), but these are here omitted, for brevity. 

Derivation of the nonlinear kinematic and pressure boundary conditions a t  the two 
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interfaces is tedious but straightforward. Since this is a well-established procedure, 
and since the resultant equations are lengthy, the details are omitted. Readers not 
familiar with this procedure are referred to the papers of McGoldrick (1965, 1970). 
Essentially, a t  each interface and for each value o f j  = 1 , 2 , 3 ,  there are two kinematic 
conditions (one for each side of the interface) and one pressure condition to be met. 
These six conditions yield six non-homogeneous equations which are linear in the six 
unknown constants 02) (m = 1 , 2 , 3 , 4 )  and 2:) (n = 1 ,2 )  and the unknown time- 
derivative d A Y ) / d t ,  and which contain nonlinear terms, quadratic in the linear wave 
amplitudes A?) (s = 1 , 2 , 3 ) ,  which result from the wave interactions at second order. 
The form of the linear terms requires a condition for compatibility of these equations, 
in order that solutions eg), A :̂) may exist, and this uniquely determines the growth 
rate dAij) /dt .  In  practice, it proves convenient to eliminate each of the 0:) from these 
equations, yielding just two inhomogeneous equations linear in Ajj) and @). These 
are of the form 

(4.1) 1 D1(wj,  kj) Aij) + A(wi, kj) A?) = PdAli) /dt  + R, 
A(wj, kj) Alj) + D2(wj, kj) Af) = QdAl”/dt + 8, 

where P, Q are known functions of wi and kj only and R, S represent the nonlinear 
interaction terms. Because of the linear dispersion relation (2.3),  it is clearly necessary 
that 

This, in schematic form, is the evolution equation for the j t h  wave. The actual 
equations, are as follows, where A$j) are the complex wave amplitudes a t  the interface 
z = 0 and * denotes complex conjugation: 

and 

where 

and 

(4.4) 
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D(wj, kj), Dl(wj, kj), D2(wj, kj) and A(@,, ki) are as defined in $2,  and j may take the 
values 1,2  or 3. Throughout the analysis, use was made of the resonant conditions (3.1). 

Several useful checks were employed to  detect and eliminate algebraic errors: the 
left-hand sides of (4.3) had to reduce to  the forms shown, proportional to  aD/awj, 
and the three interaction coefficients, denoted here by h but in fact calculated 
separately, had to be identical. [Perhaps unwisely, we did not employ the variational 
method of Simmons (1969) but  dealt directly with the interfacial conditions.] Further, 
the present result can be shown to reduce to the results of McGoldrick (1965), Simmons 
(1969) and Case & Chiu (1977) when only one interface (at either z = 0 or z = - d )  is 
present. We are therefore confident of the correctness of our result. 

The energy Ei associated with each wave is (see Cairns 1979, @3-5) 

and equations (4.3) lead immediately to the energy conservation law 

( d l d t )  [El + E, + E,] = t ( w ,  + w, - w,) Re {ihA, A ,  AT} = 0. 

As already mentioned, the interaction is of the ‘explosive’ sort whenever 

sgn (El) = sgn ( -  E,) = sgn ( -  E,). 

5. Some numerical results 
A comprehensive analysis of all possible resonant triads would be a formidable, and 

rather pointless, task. We here describe some typical results for the ‘explosive ’ type 
of resonance exemplified by the foregoing discussion of figure 3, in which case there is 
no linear instability. For each choice of the wavenumber k, on the negative-energy 
branch 3 there are either no resonant triads or two, with k, on branch 3 and k, = k, + k, 
on the positive-energy branch 1. Such triads are shown in figure 5 as plots of k, versus 
k, for various fixed values of U ,  the value of k, being k, + k,. The outermost closed 
curve for U, = 10-0 corresponds to  the dispersion curves of figure 3, and the other 
curves are for slightly smaller values of Ul but with all other quantities fixed as in 
figure 3. This particular resonance disappears a t  values of Ul below about 9.6 cm s-l. 
Naturally, these curves are symmetric about the line k, = k,. 

Corresponding to the closed curve Ul = 10-0 in figure 5, the coupling coefficient h 
has been computed from (4.4) as a ftinction of k,. As one traverseb Liie lower-right 
half of the curve Ul = 10.0 of figure 5 from A to C, k, varies from 0.244 at A to 0.64 
at B and back to  0-57 a t  C, while k, assumes the appropriate value denoted by the 
curve and k, equals k, + k,. The upper-left half of the curve of course yields the same 
values of A.  Figure 6 shows these values. It should be noted that there is one exceptional 
case (k, = 0.35, k, w 0.19) for which the interaction coefficient h is precisely zero and 
hence no resonant instability can occur. For all other non-zero values of A, the resonance 
is of the explosive sort, as already mentioned. Such exceptional cases cannot be 
predicted by energy considerations. [A case in which h is zero for a whole class of 
triads satisfying the resonance conditions is briefly reported by Simmons (1969, 3 7 ) :  
this was explained by symmetry arguments.] 

To complete the calculation of the interaction equations (4.3) it is necessary to 
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FIGURE 6. The interaction parameter h vs. wavenumber k ,  for resonant 
triads corresponding to  curve U,  = 10.0 cm s-l of figure 5 .  
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evaluate the quantities aD(wj, k j ) / a w j  on the left-hand sides. This was done using 
result (2.3) together with the appropriate resonance conditions, for the same case 
U, = 10.0 as above. These are shown in figures 7 (a,  b) ,  where we have chosen to  plot 
oaD/aw versus k, since this quantity is proportional to wave energy. Figure 7 ( a )  
shows results for the waves centred on the upper interface, corresponding to mode 3; 
this clearly demonstrates that the energy is negative for 0.11 < k < 0.91 approxi- 
mately, in agreement with figure 3. I n  figure 7 ( b ) ,  which describes the positive-energy 
mode 1 centred a t  the lower interface, a logarithmic scale has been used. This is 
necessary since the amplitudes AP) are those measured a t  the upper interface. For 
mode 1 ,  this amplitude is smaller by a factor of order O(e-kd) than the amplitude 
A f )  at the louer interface, in accordance with the readily-established result (cf. Cairns 
1979, equation 19) 

A,/,4, = -AID,  = -D , /A .  (5.1) 

Since the energy in mode 1 is approximately &w2k-l(p,+p3) IA2I2, it follows from (2.4) 
that waD/8w must vary roughly as exp (2kd)  when 3kd 9 1 .  This is substantiated by 
the slope of the curve shown in figure 7 (b) .  

From these results, the time scale of the nonlinear evolution is readily estimated. 
If the initial amplitudes IA1z)l, 1Ai3)1 a t  z = 0 are of comparable size, say d; if IA$')/ 
is of order d e x p  ( - k , d ) ,  giving a mode i wave amplitude IAil)I a t  z = - d  also of 
order d; and if the three respective wavenumbers lrj and frequencies w j  are of com- 
parable magnitudes, K and Q say, then a characteristic time scale for the evolution is 

T z Qpe"d/lh/md, ( 5 . 2 )  

where p is a characteristic density. The factor exp Kd demonstrates that the coupling 
becomes progressively weaker as Kd increases, owing to  the fact that two waves are 
centred at  z = 0 and the other a t  z = -d .  

d = 8 cm, and waveslopes 
d~ of order 0(0.05), an estimate of r for Ihl of order O( lo2) gm s-, is about 20 s, 
as compared with a characteristic wave period of order 6s. This estimate is likely 
to afford a rough lower bound for r a t  such waveslopes, since Ih I may be much less than 
O(102) for particular triads (see figure 6). The fact that even for such modest wave- 
slopes, r can be as short as 20 s, is evidence of a rather strong interaction between the 
waves. Indeed, the weakly nonlinear theory remains valid only if Qr > 1, which in 
this case implies a restriction that waveslopes &'K be no greater than about 0.05. 

With typical data K = 0.6 cm-l, Q = 1 s--l, p = 1 gm 

6. Discussion 
The method outlined by Cairns (1979)  yields valuable qualitative results both for 

linear stability and for three-wave resonance in flows with stepwise or piecewise-linear 
velocity profiles and step-wise density profiles. Such results follow from separate 
examination of the waves centred a t  each fluid interface; and the composite picture 
emerges from simple energy criteria without need for further detailed analysis of the 
coupled system. 

With the three-wave resonance, an important distinction must be drawn between 
interactions of the 'explosive ' and the 'non-explosive ' sort. ' Explosive interactions' 
occur when the wave of greatest frequency has energy of opposite sign from the other 
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FIGURE 7.  For legend see opposite. 

two. I n  such cases, all three waves can grow simultaneously while total wave energy 
remains constant; and the interaction equations, truncated a t  second order, have 
solutions which develop singularities after a finite time. This situation is well-known 
in plasma physics, but, despite their likely importance, no instances had been recog- 
nized in fluid mechanics, until the work of Cairns. However, Craik (1968, 1971)  had 
earlier drawn attention to similar ‘explosive’ cases in which wave energy is not con- 
served and all three waves grow by extraction of energy from the primary flow through 
a critical-layer mechanism which is inherently dissipative. 

In  this paper, we have examined in some detail the linear stability and nonlinear 
resonance of waves in a three-layer model with two interfaces. Our calculations 
completely substantiate Cairns’ qualitative results, and we have used the insight 
provided by his results to identify cases which deserved further study. I n  particular, 
it was discovered that several types of three-wave resonance could occur; and our 
prior knowledge enabled selection, for detailed calculation, of those triads which 
yield explosive instability. On the other hand, the nonlinear analysis leading to results 
(4.4) holds for any triad of two-dimensional waves, irrespective of the respective signs 
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FIGURE 7. (a) Graph of waD/aw v5. k for mode 3 centred at upper interface; case U, = 10.0 cm 8-l 

offigure 5. Note negative energy for 0.1 1 < k < 0.91. ( 6 )  Graph of log,, (waD/aw) V.S. k for positive 
energy mode 1 centred at lower interface; case U, = 10.0 cm a-l. 

of their energies, and represents a substantial generalization of previous work restricted 
to configurations with just a single interface. 

The complexity of our nonlinear analysis, with just two interfaces, indicates the 
value of Cairns’ simple qualitative approach for treating configurations with still more 
fluid layers. It may be applied, whenever the coupling between interfaces is sufficiently 
weak, to  (inviscid) configurations with any number of layers within which the fluid 
velocity and density are constant. Piecewise-linear fluid velocities are also permissible, 
provided the wave motion is entirely two-dimensional, as in Taylor (1931), since the 
wave motion still remains irrotational in each layer for such flows. But the method 
requires modification for three-dimensional (oblique) waves; since then, even with 
linear profiles, the mean vorticity field is distorted by the wave motion and total wave 
energy need not be conserved when a critical layer is present (for an example, see 
Craik 1968). 

With continuous, curved velocity profiles, the situation is further complicated by 
the crucial role of the ‘ critical layer ’, even in the linear approximation, and it seems 
unlikely that the qualitative method can be simply modified to deal with such cases. 
Certainly, Landahl (1962) and Benjamin (1960, 1963) have drawn attention to the 
phenamenon of linear wave growth caused by damping, which is essentially due to the 
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fact that the wave energy is negative (see Landahl 1962, figure 10 and Cairns 1979, 
5 4); but problems of nonlinear resonant wave triads in dissipative systems with 
critical layers do not appear to be amenable to such ‘short-cuts’ (see Usher & Craik 
1974, 1975). 

The nonlinear analysis given above may be extended to problems in which the 
wave amplitudes are allowed to depend on the horizontal co-ordinates x, y as well 8s 
on time t. With variation in x and t only, the right-hand sides of (4.4) are unchanged, 
but the terms dAij’/dt on the left must be replaced by (a/at + c$) a/&)  Aij) where 
cf) = awj/akj is the group velocity of the j t h  wave. Extension to cover slow variation 
of the Aij) in x, y and t merely entails calculation of the dispersion relation for oblique 
waves and inclusion of corresponding y derivatives; but in cases where the respective 
wavenumber vectors are not nearly collinear, variation in y is not now on a ‘long’ 
scale, and the interaction coefficient h must be recalculated (we do not recommend 
the latter task!). Exact solutions of such interaction equations, equivalent to (4.4) 
but with dependence on x, y and t ,  have recently become known (Zakharov 1976; 
Craik 1978). 

Despite the limitations mentioned above, i t  seems likely that the possibility of 
‘explosive ’ resonant interactions among positive- and negative-energy waves will have 
significant implications in meteorology and oceanography. Until now, work on 
resonant interactions among internal waves has been confined to triads (and quartets) 
in which each member has positive energy. However, the presence of a primary 
velocity profile which models a wind or current varying with depth may allow the 
coexistence and ‘ explosive ’ interaction of positive- and negative-energy wave-modes. 
Of course, for internal waves, there is no interfacial surface tension, unlike the situation 
examined above; so any velocity discontinuity across an interface must exhibit 
Kelvin-Helmholtz instability to sufficiently short waves (such instability being the 
manifestation of coalescence of positive- and negative-energy modes). But, even then, 
resonant interactions among the longer, linearly-stable, wave modes may have an 
important part to play in the evolution of long wavelengthdisturbances. An ‘explosive’ 
instability of such modes may yield an attractive explanation for the spontaneous 
generation of internal waves. 
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this work and for numerous discussions. One of us (J. A. Adam) was supported by the 
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